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Introduction
Helicobacter pylori is a gram-negative, mi-

croaerophilic, S-shaped, and motile bacterium 
due to flagella, which inhabits the human gastric 
submucosal (1). About half of the world’s popu-
lation is infected with Helicobacter pylori, most 
of whom are colonized as children. Unfortunate-
ly, this bacterium escapes from various immune 
system responses via different ways and causes 
chronic inflammation in gastric epithelial cells 
and the long run causes digestive disorders for its 
host, as the International Agency for Research on 

Cancer (IARC) first identified Helicobacter pylo-
ri in 1994 as the primary cause of gastric cancer 
(GC) (2-3). Helicobacter pylori is the etiological 
cause of gastrointestinal disorders including GC, 
chronic gastritis, gastric adenocarcinoma, and 
MALT (mucosa-associated lymphoid tissue) lym-
phoma (4-5).

According to the review of the literature, Helico-
bacter pylori encodes about 1,500 different pro-
teins, some of which have been identified as the 
virulence factors affecting the severity of diseases. 
Virulence factors include cagA, vacA, urease, NAP, 
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Abstract 
Helicobacter pylori is one of the most common bacteria in the stomach, colonizing 
about one-half of the population in the world, while most of them remain asymptomatic 
throughout their lives and gastric cancer (GC) occurs in only 1-2% of people. It seems 
that the final outcomes of Helicobacter pylori infection are dependent on bacterial 
virulence factors, host genetic characteristics, and the environmental conditions. In 
this study, we compared the expression of 20 known virulence factors associated 
with the development of GC in the isolated Helicobacter pylori strains from the 
Colombian patients belonging to the regions with low and high GC risks. Based on 
the results of the present study, it was found that the 20 studied virulence factors are 
closely related with each other and regulate their expressions through the required 
intermediates. We also showed that the Helicobacter pylori strains belonging to 
the region with high GC risk were more virulent and have developed into GC by 
destroying the intercellular bindings, cell skeletal dysregulation, and cell survival 
and proliferation stimulation, while the H. pylori strains in the region with low GC 
risk expressed virulence factors related to the chronic inflammation and apoptosis; 
adhesion factors were also different in both groups.
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effective enzymes in DNA metabolism, oxidative 
stress, protease, cag-PAI members (cag pathoge-
nicity island), surface factors, and some insertion 
sequences (6-9). Due to the high heterogeneity 
and recombination rate among the Helicobacter 
pylori strains, the expression patterns of viru-
lence factors are different in the Helicobacter py-
lori populations (10-12).

 All the Helicobacter pylori strains are divided 
into 6 ancestral populations, including hpEroupe, 
hpEastAsia, hpAsia2, hpAfrica1, hpAfrica2, and 
hpNEAfrica that each of the strains belonging to 
the lineages has its specific genetic characteristics 
and virulence pattern, such that the rate of GC in 
the people infected with hpEroupe and hpEastA-
sia is more prevalent than other Helicobacter py-
lori lineages (13-14). 

Since almost all the Helicobacter pylori strains 
of the Japanese people are in the form of cagA 
positive (EPIYA motif ABD), the existing strains in 
East Asia (i.e. Japan, China, South-Korea) appear 
to be more virulent. However, there have been 
limited studies comparing the expression pattern 
and pathogenicity of different populations regard-
ing Helicobacter pylori (2,14-16).

This study aimed was to evaluate and compare 
the prevalence of virulence in common factors re-
lated to GC in the Helicobacter pylori strains be-
longing to the regions with the high and low inci-
dence rates of GC.

Methods
We reviewed the microarray studies in Gene Ex-
pression Omnibus (from http://www.ncbi.nlm.
gov/geo/) and ArrayExpress (from http://www.
ebi.ac.uk/arrayexpress) to find a study on the 
expression pattern of mRNA between the H. py-
lori strains of high and low incidence GC regions. 
The keywords used to achieve the eligible studies 
included Helicobacter pylori, GC, and intestinal 
metaplasia. Our inclusion criteria included mi-
croarray studies related to the Helicobacter py-
lori strains. The strains should have been from 
high risk and low-risk regions for GC, and the 
data quality and distribution should have been 
acceptable, while the studies evaluating the popu-
lation of Homo Sapiens, Mus Musculus, or the cell 
lines were excluded. Moreover, studies involving 
any interventions (such as medications or other 
chemical compounds), studies conducted by inde-
pendent investigators under various conditions, 
and studies that were not of good quality were 
considered as the exclusion criteria. The quality 
and consistency assessment of the data was per-
formed using the R package MetaQC (17).
 Finally, differentially expressed mRNAs (DEMs) 
were determined based on the false-discovery 

rate (FDR) of 0.43% and 1.0-fold change.
A protein-protein interaction network was con-

structed based on the STRING and KEGG pathway 
database information by Cytoscape software. 
Gene ontology was performed using KEGG path-
way, eggNOG, Biocyc, and the previous articles, 
and finally, a molecular signaling network was 
proposed based on the findings of the present 
study, to justify the carcinogenesis process of Heli-
cobacter pylori strains in the high-risk areas of GC

Results
  A study by Dr. Alexander Sheh and his colleagues 
with GSE41497 access code was found under the 
GPL16166 platform. It indicated that the mRNA 
expression profile of Helicobacter pylori strains 
included three strains PZ5056, PZ5080, and 
PZ5086, which belonged to the Colombian region 
with high GC incidence, as well as three isolates 
PZ5004, PZ5024, and PZ5026, which belonged 
to the Colombian region with low GC incidence; 
all the 6 Helicobacter pylori strains were cagA+ 
and vacAs1m1. According to Sheh et al.  (2013), 
the strains PZ5026, PZ5056, PZ5080, and PZ5086 
originated from hpEroupe, while PZ5004 and 
PZ5024 stains had African origin. de Sablet et al. 
(2011) also showed that the Colombian region 
Helicobacter pylori strains with low GC incidence 
are often of the hpAfrica type (2). Previous stud-
ies have also indicated that hpAsia and hpEroupe 
strains are more carcinogeneses as compared to 
the hpAfrica strains [18-19]; the results of this 
study were consistent with the findings of previ-
ous studies.
The expression of the most important virulence 
factors of Helicobacter pylori affecting GC (ac-
cording to previous studies) was also calculated 
as fold change and listed in Table 1.
Table 1: The main virulence factor of H. pylori in 
hpEroupe strains vs. hpAfrican strains
These virulence factors were related to the pro-
cesses of acid acclimation, motility and chemotax-
is, DNA metabolism, cell envelope, translation and 
regulation, and type IV secretion system. We con-
structed our protein-protein interaction network 
of our 20 considered virulence factors using dif-
ferent database information and showed that they 
were closely related (Fig. 1).
Based on our analysis, it was found that flgD, 
jhp0730, BabA, hopM, sabB, cag4, cagA, HopQ, 
and virB11 increased the expression in the hpEr-
oupe route strains. The flgD and jhp0730 genes 
are involved in the flagella biosynthesis route 
and movement toward the gastric submucosa 
(9). Since motility causes penetration to the mu-
cus and escaping from the acidic condition of the 
stomach, the Helicobacter pylori motile strains 



Rev Clin Med 2020; Vol 7 (No 2)
Published by: Mashhad University of Medical Sciences (http://rcm.mums.ac.ir)

89

Ghazvini K et al.

Figure 1: The protein interaction network be-
tween DEMs in H. pylori strains from high GC risk

Some also believe that the antibodies against 
flagella are used as a non-invasive biomarker to 

assess the GC risk (21). 
Clyne et al. (2000) suggested that Helicobacter 

pylori may also use flagella as an adhesion [22]. 
However, flgD and jhp0730 can influence and in-
crease the expression of adhesion genes, type IV 
secretion system (T4SS), and cagA by affecting the 
intermediates such as fliQ and HP_0870 [9,23-24].

BabA, hopM, sabB, and HopQ belong to the 
class of adhesion molecules of Helicobacter pylo-
ri (5,25). According to the review of the literature, 
binding to the gastric epithelium is the most im-
portant step in the establishment of chronic colo-
nization, protection and absorption of metabolites 
for the optimal bacterial growth, and thus the He-
licobacter pylori strains that have greater ability 
and attachment capacity to the gastric epithelium 
are more carcinogenic (9, 26-27). BabA is a 78KDa 
protein that binds to the Lewis b antigenic glucose 
group, expressed at the gastric epithelium level 
(25). Studies in western countries have shown that 
BabA has a significant relationship with the devel-
opment of peptic ulcer and GC (28). HopM, HopQ, 
SabB, and BabA are also external membrane pro-
teins of Helicobacter pylori that increase the risk 
of peptic ulcer and GC by inducing chronic inflam-
mation, provoking a pro-inflammatory response, 
and the specific adhesion (25, 29-30). Based on 
the interaction network, the adhesion genes are 
the intermediate elements and the bridge be-
tween the genes involved in T4SS and the involved 
genes in motility, as is evident in the pathogenesis 
of Helicobacter pylori. The outline of Helicobacter 
pylori pathogenesis processes includes 1- the neu-
tralization of acidic conditions of the stomach, 
2- the movement to sub-mucosa, 3- attachment, 
and 4- secretion of cagA and vacA toxins via T4SS 
(9,25).Cag4, cagA, and virB11 are the most import-
ant virulence factors related to the development of 
GC [31-32]. Cag4 is a hydrolytic enzyme that caus-
es the formation and expression of Cag-T4SS by 
destroying the cell-wall (33). CagA has also been 
shown in previous studies as the most important 
factor in increasing the risk of GC [34]. Nearly all 
the Helicobacter pylori isolates isolated from the 
Japanese population (the country with the highest 
incidence of GC) contain cagA (harboring cagA) 
[35-36]. Moreover, virB11 (HP1451), along with 
cagA, is a part of Helicobacter pylori cag pathoge-
nicity island and its role is the formation of type 
IV secretion system (37). CagA is induced by T4SS 
into the gastric epithelial cell. Thus, virB11 plays 
a prominent role in the development of GC (38). 
There are several studies on the role of cagA, cagE 
and, virB11 in the development of GC (37-38). A 
meta-analysis conducted by Pormohammad et al. 
(2018) showed that cagA and vacA s1m1 allele 
had a significant relationship with an increased 
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risk of GC. This phenomenon was observed in all 
the Helicobacter pylori strains of this study iden-
tified from the Colombian region with high GC 
incidence (7). However, the expression of some 
other identified virulence factors including ureG, 
flhB, flaAB, hsp60, NAP, cagQ, cagX, TnpB, homB, 
jhp0043 and superoxide dismutase b in the hpEr-
oupe origin strains were downregulated, while 
increased in the Colombian strains with hpAfri-
ca route. These genes were mostly related to the 
production processes of urea, flagella, DNA me-
tabolism, outer membrane protein, and cagPAI. 
Urease complex is used by Helicobacter pylori to 
neutralize the acidic effect of the stomach. Kao 
et al. (2016) showed that blocking the produc-
tion of urease and virulence factors associated 
with the motility and chemotaxis results in the 
non-ccolonization of Helicobacter pylori (9,25).
Urease protects against damage due to stomach 
acid. However, some studies have not reported 
any significant relationship between urease and 
the developments in the peptic ulcer or GC [39-
40]. flhB and flaA are among the components 
associated with the Helicobacter pylori motility 
and chemotaxis, which have also been identified 
as biomarkers in some studies for the diagnosis 
of GC (9,25). As a part of IS605 transposase, TnpB 
and TnpA enter the cag-PAI and cause its disrup-
tion. TnpB in the hpAfrica route strains increases 
the expression, while it did not appear to increase 
the risk of GC (8). cagQ and cagX are parts of the 
PAI cag, which cause the apoptosis of the gastric 
epithelial cells; the rate of apoptosis in the AGS 
cell line also showed an increase in the hpAfrica 
route strains in this study (2,8,41). NAP, jhp0043, 
and superoxide dismutase b are also involved in 
pathways such as DNA repair and oxidative stress 
resistance. Some studies have suggested that NAP 
stimulates the pro-inflammatory response that is 
associated with the development of peptic ulcer 
(9,25,42). According to previous reports, DNA 
damage occurs as a result of recombination be-
tween the Helicobacter pylori strains, which is re-
covered by the SOS response, jhp0043, and NAP. 
Also, after to colonization with H. Pylori, we have 
the PMN cells infiltration, due to which NAP and 
superoxide dismutase b protect H. pylori against 
the free radicals of oxygen (42-44). HomB is ex-
pressed along with cagA and is a risk factor for 
GC together with it (8). Also, hsp60, which un-
dergoes upregulation in acidic conditions and 
stimulates proliferation and severity of diseases 
by stimulating the NF_κB pathway, and is associ-
ated with gastric adenocarcinoma (9,25,40). Gen-
erally, Helicobacter pylori strains use multiple 
virulence factors and the final clinical outcomes 
are determined depending on bacterial and host 

interaction. Due to heterogeneity and continuous 
recombination between the Helicobacter pylori 
strains, each lineage has its phenotype (2,36,40). 
We showed in this study that each of the Helico-
bacter pylori strains of the populations of hpEr-
oupe and hpAfrica have their virulence factors. 
Finally, we proposed a gene network to justify 
the carcinogenic processes of Helicobacter pylori 
strains (Fig. 2).

Discussion
While half of the world’s population is infected 
with Helicobacter pylori. The H. pylori-related 
gastrointestinal disease is seen in about 25% of 
people, and 10-20% of people with peptic ulcer 
and gastric adenocarcinoma are seen in only 
1-2% of people and about 75% of the Helico-
bacter pylori-infected populations are asymp-
tomatic (25,45). Helicobacter pylori pathogen-
esis has several important steps: 1- neutralizing 
the acidic pH of the stomach, 2- moving and pro-
gressing to the gastric sub-mucus, 3- Colonization 
and attachment to the gastric epithelial cell, 4- in-
ducing the chronic inflammation, and producing 
vacA and cagA toxins (9,25,46). The phenomenal 
reason why GC occurs in a limited population has 
roots in the interaction of the bacteria and the 
host [1]. Final clinical outcomes of infection with 
H. pylori depends on the genetic characteristics 
and virulence factors of the Helicobacter pylori 
strains, genetics, and host polymorphism, nutri-
tion and environmental conditions of the individ-
uals (1,9,25).

Colombia is one of the northwestern Latin 
American countries with an area of 1,141,000 
square kilometers, making it the second most 
populated Latin American country after Bra-
zil (47). Colombia is also one of the developing 
countries where most of its population is infect-
ed with Helicobacter pylori at childhood, but the 
rate of GC varies in different parts of this country. 
For instance, there are two areas in Southwestern 
Colombia, including Andean with a GC frequency 
of about 150 per 100,000 populations, and the 
coastal region with a GC frequency of about 6 per 
100,000 populations, which has become a puzzle 
(48-51). It is while both regions are Spanish and 
African ancestral, and the frequency of the H. py-
lori cagA positive strains in the Andean region is 
about 9% higher than in the coastal region (51). 
A similar phenomenon can be observed in the Af-
rican population, which is called “African Enigma” 
(52). Studies have shown that even though that 
nearly 100% of the African population is infected 
with H. pylori, the frequency of GC in these areas 
is very low (52-53). Since each family of Helico-
bacter pylori has its unique genetic characteris
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Figure 2: The proposed schematic diagram to 
represent pathogenesis of Helicobacter pylori 
strains compression between hpEroupe and hpA-
frica lineages

lence factor, these paradoxes may be due to the 
Helicobacter pylori strains (54-55). Studies have 
shown that the population of the Andean moun-
tains has a Spanish ancestor, while the population 
living in the coastal region is a mixture of Span-
iards and Africans (48,51). Shiota et al. (2014) 
showed that the Helicobacter pylori strains of the 
Andean region are of the hpEroup origin type, 
while the coastal region population strains are of 
hpEroupe and hpAfrica origin (56). Sablet et al. 
(2014) also showed that the frequency of hpEr-
oupe origin is higher in pre-cancerous patients 
of the Colombian population living in the coastal 
region (57). Hence, we decided to do a study on 
the changes in the virulence expression pattern 
of the Helicobacter pylori strains belonging to the 
Andean and coastal region populations.

The H. pylori strains of the Colombian region-
with high GC incidence were all of hpEroupe ori 
gion with low GC incidence was of hpEroupe and
the rest was of HpAfrica route, which was consis-
tent with the findings of previous studies. We 
have demonstrated that the expression pattern of

virulence factors differs between hpEroupe and 
hpAfrica strains. The rate of cagA expression in 
the hpEroupe origin strains was much higher 
than the hpAfrica origin strains, which justifies 
the high frequency of GC in the Andean patient 
population. 

According to our results, the Colombian H. 
pylori strains related to hpEroupe origin main-
ly express the virulence factors related to the 
proliferation and cell survival, actin rearrange-
ment, and cell junction degradation, while the 
strains belonging to the hpAfrica family express 
the virulence factors associated with gastric acid 
neutralization, escaping from the immune sys-
tem, chronic inflammation, and apoptosis. More-
over, the adhesion molecule expression pattern 
was also different in the hpEroupe and hpAfrica 
strains. The strains belonging to the hpEroupe 
family appear to be more virulent than the hpAf-
rica lineages, because the frequency of GC in the 
colonized populations with hpEroup members 
differs significantly from that of hpNEAfrica, hpA-
frica1, and hpAfrica2 (56-57).
Although both groups of the studied Helicobacter 
pylori were cagA+ and vacA s1m1, the rate of cagA 
expression in areas with high GC risk strains was 
much higher than that in the low GC risk areas. 
Loh et al. (2011) showed that the rate of cagA ex-
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pression in the isolated strains from Colombia’s 
high GC risk areas was higher than in low GC risk 
areas (51). Also, Bravo et al. (2002) showed that 
the frequency of vacA s1m1 in the high GC risk 
isolates was higher than in the low GC risk areas 
(14). Moreover, it has been considered that the 
sequence of cagA gene in the H. pylori strains of 
the Colombian patients of the high GC incidence 
regions has differences with the population of 
the regions with low GC incidence, which has led 
to the changes in the frequency of the GC rate 
in these two areas. For instance, Sicinschi et al. 
(2010) showed that the number of copies of the 
EPIYA-C motif and CagA multimerization (CM) 
motif in the H. pylori strains of high GC risk areas 
is significantly higher than the strains of low GC 
risk areas [48]. Loh et al. (2011) also showed that 
the cagA sequence in the strings of Colombia’s 
high GC risk areas contains a unique nucleotide 
sequence “AATAAGATA motif” that increases cagA 
expression and thus increases the GC cases in this 
area of Colombia (51). Also, based on our results, 
the Helicobacter pylori adhesions, including BabA 
and sabB, were increased in the strains belong-
ing to the high GC risk areas. The blood-antigen 
binding protein A (BabA) and Sialic acid-binding 
adhesion (sab) bind to the molecules in the ABO 
and Lewis antigens, respectively (9,25,58).
Previous studies of Colombia’s high GC risk pop-
ulation have also shown that gastrointestinal 
disorders often occur in the people with blood 
antigens A and Lewis b, and it has been shown 
nowadays that these blood antigens play the role 
of binding molecules for adhesion molecules, i.e. 
BabA and SabA / B of Helicobacter pylori and 
cause the establishment of persistent infection 
[58-60]. In a study of Colombia’s high GC risk 
population, Quiroga et al. (2005) found that high 
populations of Helicobacter pylori expressed the 
factors of virulence of BabA, oipA, and cagE (61).
Also, genetics and host characteristics also play 
a role in the GC. For instance, factors such as low 
serum selenium levels in the Colombian high 
GC risk population, intestinal helminthiasis in 
the low GC risk population or Single-nucleotide 
polymorphism (PMN), high GC risk populations 
(Túquerres in the Colombian Andes) and low GC 
risk (coastal) town Tumaco) plays a 25-fold dif-
ference in GC in the Colombian populations (62-
64). Recently, in their study of Helicobacter pylori 
strains of the high GC risk of Colombia popula-
tion, Gutiérrez   Escobar et al. (2017) suggested 
the presence of a new subtype called “hspColom-
bia” in this geographical area (65).

Conclusion
We evaluated and compared the virulence ex-

pression pattern of GC-related factors in the He-
licobacter pylori strains isolated from the high 
GC risk and low GC risk population in Colombia. 
We showed that the pattern of expression of vir-
ulence factors in these two groups was different; 
we also showed that the expression of cagA, cag 
PAI elements, and T4SS were higher in the H. py-
lori strains of Colombian high GC risk population. 
This phenomenon justifies the increase in the 
number of GC cases in this area.
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