Which technique is better for reduction of anterior shoulder dislocation? External Rotation or Milch method. A review of literature

Abstract
Anterior shoulder dislocation is the most common joint dislocation in human body. Many methods are traditionally described for reduction of shoulder dislocation. Most of these techniques are painful to patients and may be associated with further injury. An ideal method should be easy, effective, and less painful, not associated with iatrogenic complications and should be easy to teach and learn. Among different methods of reduction, External Rotation and Milch methods are more popular. Both methods are found to be atraumatic, relatively painless and can be done without anesthesia. In this article, we aimed to review the literatures regarding these two methods of reduction and comparing their success rate and outcome. We reviewed the literature to find articles related to reduction of anterior shoulder dislocations applying one of two techniques described above. We searched PubMed and Google Scholar. In total, 46 articles were found, of them 17 articles - which mainly focused on anterior shoulder dislocation reduction by means of two above methods - were included in our review. The results showed that the both techniques were effective, safe, relatively painless, and were well tolerated with no complications, but the External Rotation method was superior.

Keywords: shoulder, shoulder joint, shoulder dislocation

Introduction
The shoulder joint is a complex joint and has the largest range of motion of any appendicular joint (1). Shoulder dislocation is the most common joint dislocation that occurs in our body. It includes more than 50% of all joint dislocations and the most common form is anterior shoulder dislocation (90-95%) (2).

Most of reduction techniques for shoulder dislocation are painful and may be associated with complications. An ideal method of shoulder dislocation reduction should be easy to perform,
and effective. It also should be less painful than other methods, easy to teach and learn, and without complications.

Among different methods of reduction, External Rotation and Milch methods are more popular. External rotation method is a safe and reliable method which can be done without sedation and anesthesia. It can be done with less pain in anterior shoulder dislocation. In Milch method, position of humerus helps to reduce the muscle force, making reduction easy and relatively painless, safe and free of complication. Both methods are found to be atraumatic, relatively painless and can be done without anesthesia (3).

This narrative review was done to review the relevant literatures that compare these two methods of reduction regarding their success rate and outcome and finally determine which one is better.

External Rotation method

This method of reduction is an acceptable reduction technique and frequently applied. The patient should lie down in a supine position. The operator adducts the arm gently and while the elbow is in 90 degrees flexion, tries to rotate externally slowly until the shoulder is reduced (1).

Milch technique

In this technique, the patient is placed supine on the gurney and the head of the bed is elevated 20 to 30 degrees. Then, abduction and external rotation of the dislocated shoulder is done in a slow and gentle manner. The operator stops whenever resistance to motion is encountered and continues when the patient is relaxed. If the humerus has not reduced till 90 degrees of abduction and 90 degrees of external rotation have been reached, gentle longitudinal traction is applied along the humerus while the free hand is used to exert lateral and superior pressure on the humeral head to complete the maneuver. Several variants of the Milch technique have been reported in the literature (1).
Literature review

We reviewed the literature to find articles related to reduction of anterior shoulder dislocations using either External rotation or Milch method. We searched PubMed and Google Scholar, using terms of “shoulder”, “dislocation”, “reduction”, “Milch”, “External Rotation” and “Leidelmeyer” as keywords in the title and abstract. All the reviewed articles were evaluated for inclusion in our study. All of anterior shoulder dislocations reduced with one or both of aforementioned methods were included in our study. In total, 46 articles were found, of them 29 articles were about other kinds of shoulder dislocations including posterior dislocation or irrelevant to our study. 17 articles which mainly focused on anterior shoulder dislocation reduction by means of two above methods were included in our review. These reduction techniques were done without anesthesia or local anesthetic in all of reviewed articles.

In 2015, Sapkota K, et all. compared external rotation method and Milch method for reduction of acute anterior shoulder dislocation. In this study there were 52 patients, 26 in each group. The mean time required for External Rotation Method was 2.5 min, and it was 3.76 min for Milch method of reduction (p=0.005). Success rate was 88.46% in External Rotation Method and 69.23% in Milch method (p=0.09). The study suggested that there is no statistically significant difference in success rate between two methods of reduction. The external rotation method was easier, less painful, causing minimum discomfort to patients and required single doctor to perform it. There was no short term complication in both methods (3).

Another study by Guler O, et al. in 2015 Compared four different reduction methods for anterior dislocation of the shoulder. All four reduction techniques provided high success rates with no statistically significant difference among them with 92.5% success rate for External
Rotation method. Additionally, no new fracture was seen in post-reduction radiographies. Reduction time for External Rotation method was 4.9 ± 1.4 min(4).

In 2014, Gul M, et al. reported that External Rotation method for shoulder dislocations was successful in 90.7% of patients, of them 81.3% were in the first attempt and 9.4% in the second attempt. Mean reduction time was 1.5 (range: 0 to 5) minutes. Severe pain occurred in 8.6% of patients during reduction and these patients received analgesia(5).

In the study of Singh S, et al. (2012) the reduction of shoulder with Milch method was successful in 83.9% of cases. In this study 4 patients had fracture of greater tuberosity; after exclusion of these patients the success rate reached 96.3%. The pain reduction during the procedure was 2.07 (29%) on the numeric rating scale (P<0.001), and became 34% after the exclusion of 4 patients with fracture of greater tuberosity. There were no fractures or neurovascular complications after the reduction (6).

In 2012, Maity A, et al. in a prospective randomised clinical trial compared FARES (fast, reliable, and safe) method with the External Rotation method for reduction of acute anterior dislocation of shoulder. They reported that no post-reduction complications were noted in any of the patients in this study. For External Rotation method, reduction time was 3.24±1.13 min, pain felt during reduction on VAS (Visual Analog Scale) pain scale (0–100) was 33.87±16.11, and number of attempts taken during reduction was 1.46 ± 0.5. Successful reduction of shoulder dislocation was achieved with the External Rotation method in 91.25% of patients (7).

In another study, comparison between Milch and Stimson methods of reduction was done. The success rate of Milch technique in the first attempt was 82.5%; and average time of reduction was 4.68 minutes (8).

In 2011, Ma YG, et al. published a Case-control study on external rotation procedure. In their study, manipulation time of the External rotation method was ranged from 0.5 to 2
minutes with a mean of (1.3 +/- 0.7) minutes. No complications were occurred in this method(9).

Marinelli M, et al. (2009) published a paper about the External Rotation method of reduction in acute anterior shoulder dislocations. They pointed that in 64.5% of cases the reduction time was less than 5 minutes, and in 25.8% of cases it was less than 10 minutes. The mean reduction time in all of the cases was 3 minutes. In 80.6% of cases no sedation and analgesia was necessary. There were no complications after reduction. In this study 24% of patients with successfully reduced dislocations experienced severe pain during the procedure (10).

Also several other studies assessed these two methods of reduction. In Eachempati study (2004) reduction of the shoulder dislocation with use of the external rotation method was achieved within two minutes in 56% and within five minutes in 25% of patients, and total success rate was 81%. No short-term complications were noted in this study (11). In Chung study (2004) success rate was 86.25% for Milch and 90.6% for External Rotation method (12). In Gleeson study (1998) reported the success rate of 91% for Milch and 90% for External Rotation method (13). In Johnson study (1992) success rate of Milch technique was 86% (14). In Garnavos study (1992) was reported that, in the Milch technique reduction was easy, produced minimal pain and discomfort for the patient, and the success rate was as high as 94.5% (15). In Riebel study (1991) was showed the primary success rate of 72% for External Rotation method and 70% for Milch’s technique (16). In Beattie study (1986) the success rate for External Rotation method was 82% and for Milch’s method was 80% (17). In Rusel study (1981) 89.4% were reduced on first attempt using the Milch technique. There were no complications attributable to the technique itself (18). In Mirick study External Rotation method was successful in 81% of patients. No complications were attributable to the method of reduction (19).

Conclusion
In this review we found that success rates in articles were different. Average success rate of all articles was 86.2% (Min: 72%, Max: 92.5%) for External Rotation method and 84.5% (Min: 69.23%, Max: 96.3%) for Milch technique. The mean time of reduction was 2.85 minutes for External Rotation method and 3.76 minutes for Milch method. The results showed that the both techniques were effective, safe, relatively painless, and were well tolerated with no complications. But the External Rotation method was superior.

As all of these articles were done without anesthesia, it seems reasonable to do other studies under local or general anesthesia.

Acknowledgement: We would like to thank Clinical Research Development Center of Ghaem Hospital for their assistance for this manuscript.

Conflict of Interest: The authors declare no conflict of interest.

References

