Risks associated with preeclampsia: possible mechanisms

Bentolhoda Sahebnasagh (Msc)¹, Mohammad Javad Hosseinzadeh-Attar (MD,Ph.D)²*, Amrollah Sharifi (Ph.D)³

¹Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
²Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
³Golestan Research Center of Gastroenterology and Hepatology- GRCGH, Golestan University of Medical Sciences, Gorgan, Iran.

ARTICLE INFO

Article type: Review article

Article history:
Received: 13 Dec 2015
Revised: 22 Feb 2016
Accepted: 8 May 2016

Keywords:
Preeclampsia
Vascular Endothelial Growth Factor (VEGF)
Vitamin D

ABSTRACT

Findings have shown that low serum 25-hydroxy vitamin D level is a possible risk factor for incidence of preeclampsia during pregnancy. Vitamin D has important effects on multiple biological pathways, including angiogenesis. Some studies have shown that vitamin D deficiency is highly prevalent among women suffering from preeclampsia, influencing immune modulation and vascular function. Evidence has shown that an imbalance of pro-antigenic and anti-angiogenic proteins can be considered as a possible etiological factor in the development of preeclampsia. Besides, there is a series of studies linking the renin–angiotensin aldosterone system (RAAS) with preeclampsia. In this article, we review the current studies evaluating the association between maternal vitamin D status and vascular health, metabolism, placental immune function and the risk of preeclampsia. We provided evidence of the different factor involved in the metabolism of vitamin D and vitamin D receptor (VDR) expression, gene regulations, immune function, and chronic disease when vitamin D is used optimally.

Introduction

Preeclampsia is defined by hypertension and proteinuria during pregnancy (1). It is diagnosed based on the blood pressure of 140/90 mmHg or more in two stages with the urinary protein of 300 mg/day or higher, after 20 weeks of gestation (2). About 2–8 percent of primigravida women suffer from preeclampsia (3). Worldwide, 25 percent of maternal deaths are related to preeclampsia (4). Vitamin D deficiency (VDD) is considered as a high risk factor for preeclampsia, and on the other hand the prevalence of VDD is between 20 and 40 percent in pregnant women (5). Preeclampsia is not only associated with pregnancy-related complications such as preterm birth, but is also related to female mortality due to cardiovascular complications twenty years after pregnancy (6). In this paper, we review the possible mechanisms related to VDD and manifestation of preeclampsia.

We performed a literature search from January 1970 to November 2015 using PubMed/Medline, Scopus, Web of Science, and Google Scholar. The search terms were “Preeclampsia” plus “angiogenic factors”, “VEGF”, “SFlt-1”, “inflammation”, “genetic”, “Renin-angiotensin system”, and “vitamin D deficiency”. Moreover, we selected articles that evaluated the epigenetic mechanisms of preeclampsia during pregnancy.

Literature review

Incidence and risk factors for preeclampsia

Preeclampsia usually affects young and nulliparous women. There is a higher risk of developing...
preeclampsia superimposed on chronic hypertension in older women. Furthermore, the prevalence rates and ethnicity influence risk for preeclampsia; other risk factors are anti-phospholipid antibodies, diabetes, body mass index (BMI) greater than or equal to 25, first pregnancy, family history of preeclampsia, twin pregnancies, the genetic predisposition, environmental, social, and economic factors, multiple pregnancies, maternal age of 35 years or over; and race (7-10). Preeclampsia is a two-stage disease, the first step involves insufficient implantation of the placenta in early pregnancy, and the second stage involves events leading to activation of systemic endothelial response and clinical symptoms in the third trimester of pregnancy (11). It seems that inadequate placental blood flow causes increased release of substances that stimulate endothelium and play significant role in the occurrence and severity of this disease (12). There is a progressive relation between weight and risk of preeclampsia. The rate is variable between 4.3% in women with a BMI below 20 to 13.3% in women with a BMI over 35; in women who are pregnant with twins, the incidence of high blood pressure is 13% (13). Smoking has harmful consequences during pregnancy, but it reduces the risk of preeclampsia (14). In women who have fetuses with trisomy 13, the incidence of preeclampsia is 30–40% (15); these women also have high serum levels of anti-angiogenic soluble Fms-like tyrosine kinase-1 (sFlt-1), which is known to be located on the chromosome13 and 3 (15).

Vitamin D status in blood pressure

Vitamin D is associated with the pathophysiology of structural conditions such as hypertension and kidney disease. Hormonal mechanisms regulate blood pressure and diabetes. Vitamin D is known to negatively regulate the renin-angiotensin system (RAS) (16, 17). The main source of human vitamin D is endogenous production in the skin by the effect of sunlight. This process takes place in two stages: the first one occurs in the deep layers of the dermis, where the conversion of 7-dehydrocholesterol to pre-vitamin D occurs (18). Secondly, there is a chemical isomerization depending on the body temperature, where vitamin D converts slowly and gradually to vitamin D3, which is highly dependent on circulating vitamin D binding protein (DBP). After reaching the skin capillary network, vitamin D is transported to the liver by DBP, beginning its metabolic transformation (18). Sufficient maternal vitamin D level is necessary for neonatal health; in addition, maternal VDD increases the risk of fetal rickets (19, 20). The results show that by supplementation of vitamin D (containing 900 IU/D) during pregnancy, the risk of preeclampsia decreased by 32% (95% CI, 11-47%). Epidemiological studies show relationship between vitamin D and lower incidence of the hypertension in pregnancy (21). By measurement of serum 25-hydroxyvitamin D (25 [OH] D), vitamin D status will be considered as follows (22): 21–29 ng/ml (52.5–72.5 nmol/L): vitamin D inadequacy < 20 ng/ml (< 50 nmol/L): vitamin D deficiency

Serum parathyroid hormone (PTH) levels may be helpful in the diagnosis of VDD. PTH level is often increased in patients with vitamin D inadequacy. The people most at risk for VDD may have osteoporosis, malabsorption syndrome, dark skin, obesity (body mass index> 30 kg/m2), and metabolic disorders (22).

Soluble Fms-like tyrosine kinase-1 (sFlt-1 or sVEGFR-1)

Recent studies confirm the hypothesis that placental anti-angiogenesis factors are only in part responsible for the clinical manifestation of preeclampsia. Soluble Flt-1, (the soluble form of vascular endothelial growth factor (VEGF) receptor 1) and endoglin, transforming growth factor beta (TGF-B) receptor, placenta-derived soluble endoglin (sEng), is secreted by the placenta, and mobilized in the maternal blood weeks before preeclampsia (23-25). These factors may lead to endothelial dysfunction and endothelium-dependent vasodilation and proteinuria. Several days after delivery, sFlt-1 levels normalize simultaneously with reduction in proteinuria and blood pressure (26,27). SVEGFR1 is a protein called sFlt-1, which acts as an antagonist of fetal growth factor and VEGF. Increased level of sFlt-1 in preeclampsia is associated with decreased levels of VEGF and placental growth factor (PLGF) (28-30). All signs of preeclampsia including proteinuria, hypertension, and glomerular endothelial inflammation can also be observed in non-pregnant rats that were treated with sFlt-1 (30-32). Also, findings suggested that a 24% decrease in the levels of VEGF in non-pregnant mice causes glomerular endothelial, inflammation, and proteinuria (30,33). It seems that due to increased levels of sFlt-1 in preeclampsia, VEGF signaling is reduced in the kidneys, which causes inflammation of the endothelium and proteinuria (34). Moreover, sFlt-1 by binding to VEGF and PLGF inhibits their angiogenic effects (28,35). Possibly, inadequate placental blood flow causes the inflammatory response, including release of tumor necrosis factor alpha (TNF-α) (36). The cause of sFlt-1 overproduction in preeclampsia is unknown. Lately, it has been suggested that angiotensin II type 1 (AT) receptor autoantibodies lead to increased levels of sFlt-1. As a result, immunoglobulin G (IgG) from women
with preeclampsia motivates the synthesis and release of sFlt-1 through AT1 receptor activation in human trophoblast cells and placental villous explants (36-38). Siddiqui et al. showed that the angiotensin II type I receptor agonist autoantibody (AT1-AA) levels in preeclampsia are proportional to disease severity. Antibody levels were also detected in 30% of healthy pregnant women, which were five times less than women with preeclampsia (39). Hypoxia increased sFlt-1 (from 207.1 ± 78.98 to 559.3 ± 43.06) placental secretion in the preeclampsia (PE) and vitamin D supplementation meaningfully reduced sFlt-1 serum levels in the PE placentas (40). Studies show that the model containing both 25 (OH) D and sFlt-1 / PLGF ratio best prognosticated severe preeclampsia. It shows the odds ratio estimates, 95% confidence intervals (CIs) and P-values less than 0.05 for this model. After adjusting for the confounders, the 25 (OH) D and sFlt-1 / PLGF ratios were highly significant independent predictors of severe preeclampsia (both P <0.001) (41).

Rennin-angiotensin system (RAS) ratio in the diagnosis of vitamin D deficiency and preeclampsia

The rennin-angiotensin system (RAS) has an essential role in regulating blood pressure and maintaining internal stability (42). The RAS is a body monitor of blood pressure (4). Angiotensin (AGT) breaks angiotensin 1 by the effect of the renin enzyme. Angiotensin 1 is bound to the converter on the endothelial cells, which converts it to angiotensin 2. Angiotensin 2 is a strong vascular retractor that causes an increase in blood pressure (42). Angiotensin has two forms, the oxide and retractor. The oxide form AGT produces disulfide bridges causing structural changes in the molecule’s structure, which connects it to renin, consequently, facilitating the release of angiotensin 1. The ratio of oxide AGT to reduced AGT is nearly 40 to 60 in healthy pregnant women, which changes in the preeclampsia patients, consequently the amount of reduced AGT and oxide AGT is more active. This can lead to increased blood pressure in preeclampsia women (38). An increase in the expression of RAS, the AT1 receptor, leads to enhanced oxidative stress and endothelial dysfunction (27,43). The expression of renin mRNA has been recognized in macrophages, fetal membrane, and vascular smooth muscle cells (44). In addition, the AT1 was observed in villous trophoblasts and local extravillous (45,46). An important proposed mechanism of the relation between vitamin D and blood pressure includes vitamin D-mediated inhibition of the RAS (2,37). Nevertheless, studies on vitamin D receptor-deficient mice showed an increase in renin gene expression followed by overproduction of AGT II (2). Vitamin D affects vascular endothelial and smooth muscle function (47,48). Also, vitamin D receptor (VDR) agonists negatively regulate renin expression (49). Treatment of obese mice with 1α-hydroxy vitamin D2 reduced proteinuria, angiotensin II type 1 receptors, renin expression, inflammation, plasma renin activity, blood pressure and myocardial hypertrophy (50-52).

Genetics

Preeclampsia is a complex genetic disorder, and numerous genes determine the risk of preeclampsia (59,60). So far, more than 70 candidate genes associated with preeclampsia have been studied (61). CYP27B1 is the key enzyme in the transformation of 25 (OH) D3 to 1, 25 (OH) 2D3. The data from cell culture studies show that the hypoxia/oxidative stress down-regulates CYP2R1 expression, while increased CYP27B1 could be an operational response to the oxidative stress. The conquering expression of CYP27B1 in the endothelium vessel indicates that vessel endothelium can be an origin of maternal embryonic 1, 25 (OH) 2D3, and decreased CYP27B1 expression in vascular endothelium may describe the levels of 1, 25 (OH) 2D3 as a component in maternal preeclampsia (62). VDR is expressed in placental trophoblast of normotensive and pre-eclamptic pregnant women. Trophoblastic cell expression of vitamin D binding protein (VDBP), 25-hydroxylase (CYP2R1), CYP27B1, 24-hydroxylase (CYP24A1), and VDR in reproductive tissues such as placentas. Along with CYP2R1, CYP27B1 and CYP24A1, VDR regulates key target autocrine signaling within trophoblasts. Protein expressions of CYP2R1, VDBP and VDR are reduced, but CYP27B1 and CYP24A1 expressions are increased, in preeclamptic compared with normotensive placentas (30,65-67). Oxidative stress can lead to exposed vitamin D homeostasis in placental trophoblasts in preeclampsia (69).

Inflammation

At the end of pregnancy, there is a strong dependency between the immune factors and preeclampsia. In the woman whose genital tracts are exposed to fertility procedures of the sperm and ovule donor, the risk of preeclampsia increases three-fold. A partner-particular immune incompatibility might be associated (53). VDR is a family of the steroid hormone receptors, which has been found in active T-lymphocytes and B-lymphocytes and macrophage/monocyte and hence, vitamin D plays a significant role as an immune system regulator by linking active (OH) to VDR (54, 55). Vitamin D influences the balance of Thelper1 (Th1)/Thelper2 (Th2), with a negative impact on the Th1 and positive effect on the Th2 cells. In fact, it re-
extracellular proteins (65,66). The MMPs are zinc proteolytic enzymes capable of breaking down the matrix metalloproteinases (MMPs) are a family of three types of tyrosine kinase receptors including VEGF R1 (Flt-1), VEGF R2 (KDR/Flk-1), and VEGF R3 (Flt-4). The VEGF-R1 also called sFlt-1 binds to VEGF and involves in angiogenesis (63,64). The VEGF-R1 and VEGF-R2 are important in the growth and survival of endothelial cells. These results could explain the beneficial effects of vitamin D in improving endothelial cell function through VEGF-dependent pathways (74). VEGF is one of the most important factors for the growth and survival of endothelial cells that its serum levels is reduced in patients with preeclampsia (75). Therefore, local or systemic increases of VEGF in the presence of vitamin D can improve endothelial function and thus improve the symptoms of preeclampsia (70).

Conclusion

VDD is associated with an increased risk of preeclampsia. Many studies show that the use of vitamin D supplements is associated with reduced risk of preeclampsia during pregnancy. Although, at present, grave consequences of changing environmental regulations and genetic or epigenetic risk of preeclampsia during pregnancy. Although, at present, grave consequences of changing environmental regulations and genetic or epigenetic homeostasis of vitamin D are known, screening patients at risk for VDD including obese people, blacks and individuals with malabsorption seems necessary. In addition, further studies are necessary to determine vitamin D requirements during pregnancy.

Acknowledgment

This research has been supported by Tehran University of Medical Sciences grant number: 28847.

Conflict of Interest

The authors declare no conflict of interest.

References

5. Mulligan ML, Felton SK, Riek AE, et al. Implications of vita- 
mim D deficiency in pregnancy and lactation. Am J Obstet 
7. Spencer J, Polavarapu S, Timms D, et al. 294: Regional and 
monthly variation in rates of preeclampsia at delivery 
8. Lawlor DA, Leon DA, Davey Smith G. The association of amb-
bient outdoor temperature throughout pregnancy and off-
spring birthweight: findings from the Aberdeen Children of 
the 1950s cohort. BJOG. 2010;117:647-657.
9. Conde-Agudelo A, Belizán JM, Lammer C. Maternal-peri-
natal morbidity and mortality associated with adolescent 
pregnancy in Latin America: Cross-sectional study. Am J Ob-
Stet Gynecol. 2009;200:199.e2-349.
10. Duckitt K, Harrington D. Risk factors for pre-eclampsia at 
11. Roberts JM, Cooper DW. Pathogenesis and genetics of pre-
eclampsia, abruptio placentae, and adverse neonatal out-
comes among women with chronic hypertension. N Engl J 
13. Ikeda Y, Palomaki GE, Yaron Y, et al. Circulating an-
2006;194:236-245.
14. Resnick LM. Calciotropic hormones in salt-sensitive essen-
tial hypertension: 1, 25-dihydroxyvitamin D and parathy-
15. Resnick LM, Müller FB, Laragh JH. Calcium-regulating 
hormones in essential hypertension: relation to plasma 
16. Chiocte C, Lorenzo F. Comité de Comunicación de la Socie-
dad Española de Bioquimica Clínica y Patología Molecular. Vitamina D: una perspectiva actual Barcelona: Comité de Comunicación de la Sociedad Española de Bioquimica Clínica y Patología Molecular 2010.
1974;47:73-2734.
18. Mackay AP, Berg CJ, Atrash HK. Pregnancy-related mor-
tality from preeclampsia and eclampsia. Obstet Gynecol. 
2001;97:533-538.
ficiency rickets among children in Canada. CMAJ. 
2007;177:161-166.
treatment, and prevention of vitamin D deficiency: an En-
docrine Society clinical practice guideline. J Clin Endocrinol 
Metab. 2011;96:1911-1930.
angionic factors in its pathogenesis. Physiology (Bethes-
22. Baumann MU, Bersinger NA, Mhoaupt MG, et al. First-tri-
mester serum levels of soluble endoglin and soluble fms-
like tyrosine kinase-1 as first-trimester markers for late-on-
contributes to the pathogenesis of preeclampsia. Nat Med. 
26. Shibuya M. Structure and function of VEGF/VEGF-recep-
tor system involved in angiogenesis. Cell Struct Funct. 
2001;26:25-35.
27. Ching S, Kashinkunti S, Niehaus MD, et al. Mammary Arpido-
cytes Bioactivate 25-hydroxyvitamin D(3) and Signal via Vi-
tamin D(3) Receptor. Modulating Mammary Epithelial 
28. Maynard SE, Min JY, Merchant J, et al. Excess placental sol-
uble fms-like tyrosine kinase 1 (sFlt1) may contribute to 
edotheilial dysfunction, hypertension, and proteinuria in 
29. Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of 
the maternal endothelium: the role of anti-angiogenic fac-
tors and implications for later cardiovascular disease. Circu-
30. Podjarny E, Lionczcy G, Baylis C. Animal Models of Pre-
ations of VEGF-A expression lead to distinct congenital 
32. Vittonos N, Hassiakos D, Iazuzo C. Mechanical mechanisms of 
33. Kendall RL, Wang G, Thomas KA. Identification of a natu-
ralt soluble form of the vascular endothelial growth factor 
receptor, FLT-1, and its heterodimerization with NDR. Bio-
bodies to the AT1 receptor in a transgenic rat model of pre-
1,25(OH)2D3-dependent regulation of the renin-angiotensin 
system in 1alpha-hydroxylase knockout mice. Nephron Int. 
angiotensinogen modulates angiotensin release. Nature 
2010;468:108-111.
ptor agonist autoantibody is highly prevalent in pre-
eclampsia: correlation with disease severity. Hypertension 
2010;55:386-393.
38. Darby MM, Wallace K, Cornelius D, et al. Vitamin D Supple-
mentation Suppresses Hypoxia-Stimulated Placental Cyto-
kine Secretion, Hypertension and CD4+ T Cell Stimulation in 
maternal serum 25-hydroxyvitamin D level and soluble 
flk-1-like tyrosine kinase 1/placental growth factor ra-
tio as predictors of severe preeclampsia. Hypertension. 
supplementation for 16 weeks improves flow-mediated dil-
ation in overweight African-American adults. Am J Hy-
pertens. 2011;24:147-158.
42. Jablonski KL, Chonchol M, Pierce GL, et al. 25-Hydroxyvi-
tamin D deficiency is associated with inflammation-linked 
vascular endothelial dysfunction in middle-aged and older 
43. Li YC. Vitamin D regulation of the renin-angiotensin system.


