Autophagy as one of the most important strategies for the treatment of tuberculosis; Mini-review

Masoud Youssefi (MD)1, Majid Eslami (Ph.D)2, Mohsen Karbalaei (Ph.D)3, Masoud Keikha (Ph.D)*1, Kiarash Ghazvini (Ph.D)1

1 Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
2 Department of Microbiology and Virology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
3 Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.

ARTICLE INFO

Article type
Review article

Article history
Received: 22 May 2019
Revised: 24 Sep 2019
Accepted: 17 Oct 2019

Keywords
Autophagy
Mycobacterium tuberculosis
Treatment
Tuberculosis

Cancer is defined as uncontrolled cell division, which could spread or invade various tissues. There are more than 200 types of cancer, including breast, skin, lung, colon, and prostate cancer, and lymphoma, the symptoms and indications of which vary depending on the type of tissues. Cancer has several treatments with different applications. For instance, chemotherapy, radiation therapy, surgery or their combination are common treatment modalities for cancer. However, a complete cure for cancer has not been achieved yet. On the other hand, novel drugs for cancer treatment are not efficient due to the ability of cancer cells to develop resistance against chemotherapeutic agents. Recently, natural compounds have been reported to improve the efficiency of cancer treatment. Polyunsaturated fatty acids (PUFAs) are natural compounds that could be used as dietary supplements in cancer patients. PUFAs are classified into two main categories, including n-3 and n-6 PUFAs. According to the literature, n-3 PUFAs exert protective effects against cancer through the induction of apoptotic pathways and suppressing cell proliferation, while n-6 PUFAs cause tumor formation by inducing cell growth and proliferation. Using PUFAs in combination with chemotherapeutic agents is considered to be an effective approach to the treatment of cancer patients through increasing cancer cell death. This review aimed to discuss the interactive effects of the structure and function of PUFAs on cancer and cell processes through various signaling pathways.

Please cite this paper as:

Introduction

Mycobacterium tuberculosis (MtB) is a common cause of death due to infectious diseases across the world. According to the report of the World Health Organization (WHO) in 2017, approximately 10 million new cases of MtB infection have been recorded, including 5.8 million males, 3.2 million females, and one million children, among which 464,633 cases have been reported to be simultaneously infected with HIV-1.

The emergence and spread of drug-resistant tuberculosis (DR-TB) bacterial strains have increased the concerns regarding the treatment and control of TB, so that until 2017, 558,000 cases of resistance to rifampin were recorded, 82% of which were afflicted with multidrug-resistant TB (MDR-TB) (1-4). In addition, approximately a quarter of the world’s population has been reported to be infected with latent TB, while only 5-10% are affected with active TB. Due to the inefficiency of the current TB vaccination, which is known as the Bacillus Calmette-Guérin (BCG) vaccine, in the prevention and complete immunization against active TB...
and TB re-activation in adults, it could be stated that the eradication of TB is not possible (1, 5-7).

Literature Review

Mtb effectively employs several strategies to escape the immune system. Therefore, the key to battling TB would be to consider and investigate the molecular mechanisms that may complicate the pathogenesis of Mtb (8).

Mtb is spread through the infected droplets that are generated by sneezing and coughing of TB-infected individuals. Upon arrival, the bacterium is detected by the alveolar macrophages and other innate immune cells. The final outcome of the disease varies depending on the interactions between Mtb and conditions of the host; the main outcomes could be classified as primary aborted TB infection, active TB, latent TB infection (LTBI), and re-activation of latent TB.

Cellular immune responses play a key role against TB. For instance, shift to the Th1 response and production of IFN-γ leads to the phagocytosis and degradation of TB bacilli (i.e., tubercle bacillus). On the other hand, switching to Th1/Th17 leads to LTBI. Moreover, shifts toward Th2/Th22 lead to the production of interleukin-10 (IL-10), IL-4, IL-13, and CTLA-4, thereby causing the impairment of the cellular immune system and TB re-activation (5-8). Co-infection with HIV and destruction of CD4+T cells (Th1) are also considered to be important risk factors for the re-activation of LTBI (9).

An elementary and effective Mtb mechanism for the prevention of degradation is the containment of the formation of intracellular phagosome-lysosome fusion. Additionally, tubercle bacillus remains hydrolyzed in phagocytosis cells by inhibiting the acidification of phagolysosomes through restraining the H+-ATPase pump, as well as the inhibition of phagosome maturation through blocking the phosphatidylinositol 3-kinase Vps34 pathway (10). Interestingly, many of these mechanisms are associated with the autophagy process, especially the phosphatidylinositol 3-phosphate (PI3P) and PI3K-hVps34 signaling pathways. Therefore, it seems that the autophagy process may be involved in the pathogenesis of Mtb (11).

Autophagy is considered to be an important intracellular mechanism for the degradation and reprocessing of macromolecules, as well as damaged and worn-out organelles. During the process, part of the cell cytoplasm is enclosed within an exclusive vacuole, which is known as autophagosome, and is ultimately fused with a lysosome to be decomposed. Approximately 30 genes regulate the autophagy process in yeasts, among which 16 homologous genes have been identified in the human genome as well (12, 13).

Autophagy is one of the mechanisms of programmed cell death, which occurs in order to maintain normal homeostasis, cellular starvation, adenosine triphosphate (ATP) supply, aging, stress response, and cancer and infectious particles in eukaryotic cells (14). In general, three elements are involved in the autophagy process, including autophagy-related genes (Atgs), autophagosome vesicles interacting with organelles (e.g., mitochondria and endoplasmic reticulum/Golgi apparatus), and lysosomes (15). The most prominent ATGs include ULK1 (Atg1), Beclin-1 (Atg6), PI3PK, hvP34, p62, NBR1, NDP52, LC3 (Atg8; containing the LC3I solution and LC3II lipid form and expressed in three isoforms of LC3A, LC3B, and LC3C), GABARAP, GABARAPL1, and GABARAPL2. LC3II is considered to be the most important autophagy marker, which is produced through the action of Atg3 from LC3I (12, 16). In addition, Beclin-1 and Atg5 play a key role in the regulation of signaling pathways and formation of autophagosomes, while p62 and NDP52 are often expressed as autophagy receptors in the cell cytoplasm (16).

As a defensive strategy in innate immunity, autophagy deals with various intracellular...
pathogens, such as Mtb. During infections, bacterial antigens are identified by a specific group of PRRs known as sequestosome-like receptors, which are introduced and bound to the LC3 proteins after ubiquitin tagging through adapter proteins, such as NRB1, p62, and NDP52. Afterwards, LC3 acts as a carrier, integrating autophagosomes into lysosomes (fusion). As a result, the TB bacilli are degraded by lysozyme hydrolyzes (Figure 1) (18).

According to the literature, the autophagy process is induced and enhanced owing to the degradation of latent TB bacilli in macrophages after isoniazid and pyrazinamide treatment, leading to the release of Mtb antigens and response to ROS and NADPH oxidase (19). In a study in this regard, Gutier et al. demonstrated that the starvation of Mtb-infected macrophages and simultaneous rapamycin treatment increased the interactions between Mtb, Beclin-1, and LC3, thereby inducing autophagy. Furthermore, the mentioned study indicated that IFN-γ could improve the clearance of Mtb from the body via the immunity-related GTPase family M protein 1 signaling pathway through stimulating autophagy (20). Moreover, ATP, damage-associated molecular patterns, vitamin D, and ROS could stimulate and increase autophagy, while IL-1β, IL-10, mycobacterial cell wall compounds (especially phosphatidylinositol ManLAM, ESAT-6, and CFP-10) could restrain and dysregulate autophagy (21).

Table 1. Different types of biological molecules and their effects on autophagy

<table>
<thead>
<tr>
<th>Type of molecules</th>
<th>Production sources of molecules</th>
<th>Effect on autophagy</th>
<th>Effect on tuberculosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-γ</td>
<td>Macrophages and Th1</td>
<td>Influenced the STAT-1 pathway</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>Rapamycin</td>
<td>drug</td>
<td>Repression of mTOR</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>PAMPs</td>
<td>Mtb</td>
<td>Induction STING cytosolic pathway</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>Parkin</td>
<td>Dysfunctional mitochondria</td>
<td>Induce ATGs</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>P62</td>
<td>Human genomics</td>
<td>Promote E3 ligase expression</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>NF-kB</td>
<td>Human genomics</td>
<td>Expression of IRGM, LC3 and ATG16L1</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>Cathelicidin</td>
<td>Human genomics</td>
<td>Pro-inflammatory cytokines production</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>25-dihydroxy vitamin D3</td>
<td>Nutrition</td>
<td>Co-factors and provoke phagocytosis</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>anti-protozoal drug</td>
<td>others</td>
<td>Ca2+ influx and PLC-ϒ pathway</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>Toll-like receptor 4</td>
<td>Human genomics</td>
<td>MyD88 signaling pathway</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>Extracellular ATP</td>
<td>others</td>
<td>P2x receptor impressing</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>microRNA-155</td>
<td>Human genomics</td>
<td>Ras and Reb inhibitor</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>Reactive oxygen response</td>
<td>Human genomics</td>
<td>AMPK signaling pathway</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>Metformin</td>
<td>others</td>
<td>Destruction of TB bacilli</td>
<td>Bacterial clearance</td>
</tr>
<tr>
<td>Anti-tuberculosis drugs</td>
<td>others</td>
<td>Inhibition of JNK-pathway</td>
<td>Bacterial survival</td>
</tr>
<tr>
<td>Eis</td>
<td>Mtb</td>
<td>Inhibition ca2+ flux</td>
<td>Bacterial survival</td>
</tr>
<tr>
<td>Rab-GTPase</td>
<td>Mtb</td>
<td>Dysregulation of ATG8</td>
<td>Bacterial survival</td>
</tr>
<tr>
<td>ESAT-6/CFP-10</td>
<td>Mtb</td>
<td>Inhibitor of ATG16L1 and beclin 1</td>
<td>Bacterial survival</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Th2</td>
<td>Inhibitor of ATG16L1 and beclin 1</td>
<td>Bacterial survival</td>
</tr>
<tr>
<td>miR-30A</td>
<td>Human genomics</td>
<td>Phagosomal evasion</td>
<td>Bacterial survival</td>
</tr>
<tr>
<td>env</td>
<td>HIV</td>
<td>Dysregulation of Bed1</td>
<td>Bacterial survival</td>
</tr>
</tbody>
</table>
It is speculated that provoking autophagy pathways is an effective anti-TB strategy, which may lead to the development of anti-TB drugs with a new mode of action. In this regard, findings have demonstrated that rapamycin and pyrazinamide treatment could enhance the autophagy pathway (22, 23). In addition, the administration of the antipsychotic drugs that increase and stimulate calcium pumps and metformin through the activation of AMPKs (mTOR inhibitors) could ultimately stimulate and increase autophagy, thereby improving TB control (Table 1) (23, 24). Some of the proteins belonging to the autophagy pathway (especially p62) are also known as neo-antimicrobial peptides owing to their central role against TB and could be synthesized and commercialized as pharmaceutical compounds (25).

Conclusion
Considering the emergence of high-resistance bacterial strains against common antibiotics and ineffectiveness of TB vaccines (e.g., BCG) in the prevention and treatment of the disease, eradication of TB does not seem to be possible. Therefore, the emphasis lays on the prevention of TB, and the use of immunity-based methods has been highlighted in this regard. Cellular immune responses play a pivotal role against TB, such as the shift to the Th1 response and production of IFN-γ, which leads to the phagocytosis and degradation of Mtb or switching to Th1/Th17, which results in LTBI. Furthermore, the shifts toward Th2/Th22 lead to the production of IL-10, IL-4, IL-13, and CTLA-4, causing the impairment of the cellular immune system and TB reactivation. Interestingly, several of these mechanisms (particularly the signaling pathways of PI3P and PI3K-hVps34) are associated with autophagy development.

Autophagy is an innate immune defense mechanism, which deals with intracellular pathogens such as Mtb. At some stage during infections, bacterial antigens are identified by a specific group of PRRs, and after ubiquitin tagging, they are bound to LC3 proteins through adapter proteins such as NRB1, p62, and NDP52. Therefore, it could be hypothesized that provoking the autophagy pathways is a prominent anti-TB strategy, which may enhance anti-TB drugs with a novel mode of action.

Acknowledgements
Hereby, we extend our gratitude to Mashhad University of Medical Sciences and Jiroft University of Medical Sciences for assisting us in this research project. The authors received no funds for this study.

Conflict of Interest
The authors declare no conflict of interest.

References