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Congenital fusion of cervical vertebrae is a rare anomaly. In this condition, two 
fused vertebrae appear structurally and functionally as one. This anomaly may be 
symptomatic or asymptomatic. Myelopathy, limitation in neck movement, muscular 
atrophy and regional sensory loss are examples of probable morbidity associated 
with this anomaly. Combination of genetic and environmental factors are involved 
in pathogenesis of this anomaly. Malformation of notochord, poor performance of 
retinoids, decreased local blood supply of spine and alteration in genes expression, 
especially members of Hox and Pax family genes are some of the proposed reasons 
of congenital fusion of cervical vertebrae. Diagnosis of this congenital anomaly in 
childhood seems to have an important role in prevention of probable secondary 
disorders in adulthood. We offer to clinicians that after performing careful physical 
tests and noticing the presence of signs and symptoms that mentioned in this paper, 
if a patient suspected to have congenital fusion of cervical vertebrae, genetic tests 
ought to be performed.
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Introduction
 Small size and foramen transversarium are 

characteristics features of seven cervical ver-
tebrae. Each cervical vertebra has the follow-
ing features: the superior surface of centrum 
is concave and that’s inferior surface is convex, 
each transverse process perforated by a foramen 
transversarium, the spinous process is bifid (ex-
cept 7th vertebrae), and the shape of vertebral fo-
ramen is three-sided (1-3).

For many years, cervical region abnormalities 
were of attention mainly to clinicians. Congenital 
fusion of cervical vertebrae (CFCV) is an uncom-
mon but well-known disorder. Some clinicians 
consider CFCV as an accidental finding of radio-

logical survey, independent to any disease, whilst 
others estimate that CFCV might be a reason for 
secondary changes and mobility trouble of adja-
cent vertebrae (4-7). Most common fusions are 
between the facet joints of the second and third 
cervical vertebrae (C2 and C3) (8). Some clinical 
signs and symptoms such as shortening of cer-
vical spine, webbing of the neck, malformations 
of osseous tissue, trouble of neck movement, 
hemi-vertebrae, kyphosis and lowered line of 
hair can occur following CFCV (9,10). One of the 
secondary effects of CFCV on the adjacent level is 
formation of osteophyte (11). 

A complex sequence of events occurs through 



Rev Clin Med 2016; Vol 3 (No 4)
Published by: Mashhad University of Medical Sciences (http://rcm.mums.ac.ir)

149

Mardani M et al.

surrounded with annulus fibrosus and is the rem-
nant of embryonic notochord (26-28). 

1.2.Genes and regulation of vertebral development
Precise survey of vertebral development pres-

ents valuable information about the main roles 
of genes in all phase of development. Regulatory 
functions of genes were proven in differentiation, 
migration and ossification of vertebral precur-
sor cells. In addition to the roles of many genes 
in vertebral development, Hox and Pax genes are 
considered more than other genes.  

Vertebra Hox genes play a key role in patterning 
of vertebrae (17,29). Controlling the body plan 
during establishment of cranial-caudal axis is one 
of the important functions of Hox genes (30,31).
In mammals, determining the type of segment 
structure (vertebrae in human) is mediated with 
Hox genes (30). Hox genes contain a specific DNA 
sequence that is known as homeobox (30,32,33).

 Pax genes encode a family of nine proteins 
(Pax1 to Pax9), and based on difference in struc-
tural domain, divided into four groups (Pax fam-
ily group I to IV)(34,35). During organogenesis, 
Pax proteins have a critical functions (36) and 
any alteration in Pax genes expression cause sig-
nificant abnormalities in embryo(37-41). Among 
the Pax proteins, Pax1 and Pax9 are expressed 
during skeletal development (42-45). During ver-
tebral evolution, both pax1 and pax9 activate the 
expression of Bapx1, an expressed protein in the 
sclerotome(43,46).

 
1.3. Development of 1st and 2nd cervical vertebrae

Unusual morphology and distinctive origin of 
1st and 2nd cervical vertebrae (atlas and axis re-
spectively) is the reason of being called atypical 
cervical vertebrae. The main unique feature of at-
las is the absence of vertebral body. The atlas con-
sists of two lateral masses connected by anterior 
and posterior arch. In the rotational movement of 
the atlas and head around the cranially projection 
of axis (called odontoid process) (47,48).
Proatlas (not found in human) is formed from fu-
sion between lowest occipital somite and the 1st 

cervical somite. In normal development, proatlas 
cells contribute to the formation of superior por-
tion of the axis dense. The 1st, 2nd and 3rd cervical 
somites contribute to the formation of C1 and C2 
vertebral primordia. C1 and C2 vertebral primor-
dia are involved in the formation of inferior por-
tion of dense, axis body, lateral masses and ante-
rior/posterior arch of atlas (49,50). 

2. Congenital fusion of cervical vertebrae
Congenital anomalies of the vertebral column 

do not have a low incidence (51). When two 

development of vertebral column. Changes in the 
pattern of development in each phase can result 
in malformation of vertebral column. Diagnosis 
of these congenital abnormalities with help of 
basic embryological knowledge, physical tests 
and radiological assessments seems to have an 
important role in prevention of secondary disor-
ders and in reducing the side effects of surgery 
(12). Somites are derived from paraxial meso-
derm, and sclerotomal portion of somites con-
tributes to the developing of vertebrae(13). One 
of the proposed reason of CFCV is disturbance 
in normal spinal segmentation during embryo-
logical development, following decrease in local 
blood supply between 3th to 8th week of embryon-
ic period (14). Alterations of Hox genes expres-
sion play an important role in pathogenesis of 
CFCV (15-17). This paper deals first with normal 
development of cervical vertebrae, followed by 
description and embryological etiology of con-
genital fusion of cervical vertebrae.

Literature review
1. Normal development of cervical vertebrae

At the 8th week of embryonic life, organogen-
esis is usually complete (18). During this phase, 
formation of cervical vertebrae occurs following 
migration, segmentation and chondrification 
process. At the 6th week, chondrification centers 
are recognized and ossification of the centrum 
and lamina occurs at the 8th week of gestational 
age (19). In humans, formation of somites initi-
ates along the dorsal side of developing embryo 
in the 20th day of embryonic life (20). They com-
prise the precursors of vertebral skeleton, trunk 
muscles and spinal cord meninges (21). In a short 
time after formation, each somite separates into 
two subdivisions, the sclerotome or ventromedial 
portion and dermomyotome or dorsolateral por-
tion of the somite. Vertebrae and ribs originate 
from the sclerotome. Following the migration of 
ventral sclerotomal cell to surround the noto-
chord, centrum is forms. Vertebral arch and spi-
nous process are formed from dorsal sclerotomal 
cell surrounding the neural tube and more later-
ally located sclerotomal cell forms the transvers 
process and ribs (22-25).

With progression of development, resegmenta-
tion procedure occurs, this term refer to normally 
fusion between the caudal half of each sclerotome 
and cranial half of the adjacent sclerotome. The 
space between cranial and caudal portions of 
original sclerotome segment filled with mes-
enchymal cells. These cells do not proliferate 
and contribute to formation of annulus fibrosus 
portion of intervertebral disc. Another portion 
of intervertebral disc is nucleus pulposus that is 
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vertebrae fused together, two vertebrae appear 
structurally and functionally as one (10). In re-
ferred condition, the fusion of vertebrae results 
in more biomechanical pressure in relating seg-
ments leading to premature deteriorating chang-
es at relating motion segments (52). During 
blastemal stage, combination of genetic and en-
vironmental factors are involved in pathogenesis 
of CFCV(1). CFCV may be symptomatic or asymp-
tomatic; myelopathy is one of the serious clinical 
features of CFCV in some patients. CFCV may be 
associated with klippel- feil syndrome and limit-
ed neck movement; muscular atrophy and senso-
ry loss may also be observed (10, 53-56). In this 
portion, we surveyed the molecular embryology 
of CFCV etiology. 

Malformations of notochord (chorda dorsalis) 
is one of the primary proposed reason of CFCV 
(1,10,57,58). Retinoids are one of the main fac-
tors that are involved in pathogenesis of skele-
tal anomalies such as abnormal axial skeleton, 
disordered segmentation of notochord, over-
sized vertebrae and CFCV (27,59,60). Retinoids 
may have a key role in establishment of somites 
(61,62). The retinoids have effects on evolution 
of the vertebrae via regulation of Hox genes, 
which are important in vertebral development 
(63-66). Some studies suggest that decrease in 
local blood supply of spine in embryonic life is 
the leading cause of CFCV (1,10).

Common site of CFCV is between facet joint of 
C2 and C3 (8,67-70). Many studies have found as-
sociation between cervical anomalies, especially 
fusion of C2 and C3, and dental malocclusion, fe-
tal alcohol syndrome, cleft lip and plate(71-75).

2.1. Occipitalization of the atlas
Because of juxtaposition to the spinomedullary 

region, atlanto-occipital fusion or atlas occipi-
talization is considered as important congenital 
malformations in skull base (76). As regards, 
both Arnold-chiari malformation and atlas occip-
italization cause obstruction of foramen magnum 
, not all atlas occipitalization can be distinguished 
from Arnold-chiari (77,78). In Arnold-chiari mal-
formation, portions of cerebellum are located 
below the foramen magnum (79,80). Some sur-
veys reported that the occurrence of atlas occip-
italization differs from 0.5 to 1.0% in Caucasians 
(76,81).

 A wide range of signs and symptoms can be 
produced with atlas occipitalization, which differ 
from headache to full blown neurological syn-
drome (82,83). During embryonic development, 
failure of segmentation between lowest occipital 
sclerotome and the 1st cervical sclerotome is the 
main cause of atlas occipitalization (47,83). Fu-

sion between the 2nd and 3rd cervical vertebrae 
with instability of the atlanto-axial articulation is 
observed in almost 70% of patients with atlas oc-
cipitalization (52).

2.2. Atlanto-axial subluxation
Atlanto-axial subluxation (AAS) is a disorder 

of atlas (C1) and axis (C2) and is characterized 
with abnormal fusion between anterior facet of 
atlas and facet of axis. AAS causes impairment in 
rotational movement of the neck. It may be asso-
ciated with dislocation of the lateral mass of C1 
on C2 (84-86). In other words, AAS may occur 
with or without C1-C2 dislocation (87). AAS may 
be acquired (as result of trauma) or inherited 
(87).Congenitally, AAS may be associated with 
some conditions such as klippel-feil syndrome 
(56,88,89), Down syndrome (90,91), Marfan syn-
drome (92), Morquio syndrome (93,94) and Gris-
el syndrome(95,96).

2.3. Genetically etiology of CFCV
So far, many genes in the evolution and patho-

genesis of cervical vertebrae have been studied.; 
The chromosomal address of Human Pax1 gene is 
20p11.2 (97,98). Alterations in expression of this 
gene have been associated with some vertebral 
anomalies (99-101). Hox genes encode transcrip-
tional regulatory proteins that play a key role in 
control of axial skeletal formation. (102). HoxPG3, 
HoxPG4 and HoxPG5 are examples of Hox fami-
ly genes involved in establishing morphologies 
in the cervical skeleton (17). Mutations in some 
members of Hox genes family have been associat-
ed with cervical vertebrae anomalies (103-106). 

Conclusion 
Clinical embryology is one of the most import-

ant parts of medical sciences, and detailed scru-
tiny of embryological etiology of anomalies plays 
an important role in reducing the incidence of 
this anomalies. Early diagnosis of these anoma-
lies will be helpful in recording the change due 
to an injury, aging, or progressive degenerative 
process. We offer to clinicians, after performing 
careful physical tests and noticing the presence of 
signs and symptoms that mentioned in this paper, 
if a patient suspected to have CFCV, genetic tests 
ought to be performed.
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Table 1. Summary of the genes involved in pathogenesis of CFCV.
Involved gene Anatomical characterization Reference

Pax1 (usually associated 
with pax9)

Fusion between 1st and 2nd cervical vertebrae 

Fusion between 4th and 5th cervical vertebrae
  
Fusion between atlas and dense of axis   
                          
Fusion between vertebral bodies 

Fusion between 1st , 2nd and 3rd cervical vertebrae arches 

(99)
                                                     
(99)
                                                 
(43)
                                                   
(43)
                                                      
(107)

HoxB/HoxD Fusion between 1st and 2nd cervical vertebrae (108)

 Hoxd3 Partial occipitalization of 1st cervical vertebra (104)

 Meox1 Cranio-vertebral fusion

Fused cervical vertebrae

(109)
                                                 
(110)

 Cyp26b1 Abnormally fused cervical vertebrae

Fusion between atlas and axis

(65, 111-113)

(112)

 GDF6 Intervertebral joint fusion

Fusion of vertebral bodies of 2nd and 3rd cervical vertebra 

(114, 115)

(116)
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