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In recent decades, special attention has been paid to cell death mechanisms, with the 
exception of apoptosis. This could be due to the resistance of cells, particularly cancer 
cells, to apoptosis. Among novel pathways, autophagy and endoplasmic reticulum 
(ER) stress have attracted the attention of researchers. A large number of antitumor 
drugs have been developed based on their modulatory effects on autophagy and ER 
stress. On the other hand, ER stress could stimulate autophagy and apoptosis, which is 
indicative of the dual role of this pathway. Therefore, the monitoring of these pathways 
could contribute to the treatment of pathological conditions. Among the multiple 
synthetic and natural modulators of autophagy and ER stress, natural agents are used 
more extensively owing to their few side-effects, valuable biological activities, and 
cost-efficiency. Honokiol as a lignin extracted from the bark of magnolia tree. This 
compound has been reported to have antioxidant, anti-inflammatory, anti-diabetic, 
and antitumor effects. The present study aimed to first introduce honokiol, autophagy, 
and ER stress and assess the modulatory effects of honokiol on the autophagy and 
ER stress mechanisms so as to demonstrate the therapeutic efficacy of this natural 
compound.
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Introduction
There is an absolute need for organisms to 

maintain their homeostasis in physiological and 
pathological conditions. Regulated cell death 
(RCD) is involved in this homeostasis through 
the degradation of impaired or potentially toxic 
organelles and macromolecules. Furthermore, 
RCD is observed in physiological and pathological 
conditions in a large number of organisms, such 
as eukaryotes and some prokaryotes (1-13). In 
general, cell death is classified into three distinct 
categories, including apoptosis, autophagy, and 

necrosis (14). 
Apoptosis has not exhibited a promising profile 

in cancer therapy. In an experiment performed by 
Roumane et al. (15), the results indicated that the 
effective treatment of cancer requires the proper 
understanding cell death mechanisms rather than 
apoptosis, which is mainly due to the proliferative 
effects of apoptosis on the surrounding surviv-
ing cells; this is referred to as apoptosis-induced 
proliferation. From an organelle standpoint, en-
doplasmic reticulum (ER) also plays a key role 
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mechanisms is considered essential (39,40,52).
According to the literature, the PI3K/Akt/mTOR 

pathway is the most important regulator of auto-
phagy. In normal conditions (i.e., balanced energy 
level), the mammalian target of rapamycin com-
plex 1 (mTORC1) suppresses the autophagy pro-
cess through the phosphorylation of Unc-51-like 
kinase 1/2 (ULK1/2) and autophagy-related gene 
13 (ATG13). In addition, class-I PI3K (phosphati-
dylinositol-3-phosphate kinase) and class-III PI3K 
are considered to be the inhibitors and stimulators 
of autophagy, respectively (53,54). 

Under stress conditions (e.g., starvation), ATG1 
activates autophagy (55,56). After activation, 
ATG1 produces the phagophore (cup-shaped 
structure) that surrounds the cargo. Afterwards, 
this complex phosphorylates the Beclin-1 at Ser14 
residues in order to accelerate the formation of au-
tophagosome through the activation of other ATGs 
on the membranes of the phagophore (57). Fol-
lowing that, the signal of the triggering autophagy 
is induced via the ubiquitination and degradation 
of ULK-1 by Cul3-KLHL20 ligase complex (58). At 
this phase, autophagosome has been formed and is 
in the nucleation stage, where the VPS34-Beclin-1 
complex plays a remarkable role (59,60). Final-
ly, the elongation of the autophagosome occurs, 
in which two ubiquitin-like conjugation systems 
(ATG5-ATG12 and light chain 3 complexes [LC3]) 
are involved (61). 

Molecular Mechanisms of Endoplasmic Reticu-
lum Stress

The regulation of protein homeostasis is re-
ferred to as proteostasis, which is a mechanism 
investigating the synthesis, folding, assembly, 
translocation, and decomposition of proteins. En-
doplasmic reticulum (ER) is an organized, dou-
ble-membrane compartment that is involved in 
the proper folding of a large number of eukary-
otic cell proteins (proteostasis), Ca2+ storage and 
release, and lipid and carbohydrate metabolism 
(62-64). In this regard, it is of utmost importance 
to consider the key role of these proteins as some 
must lodge in ER, Golgi apparatus, lysosomes, 
and plasma membrane, while the others are in-
volved in intracellular signaling pathways, which 
confirms their pivotal role in cellular processes 
as well. Therefore, it is crucial to maintain ER ho-
meostasis, which results in normal organismal 
physiology. The quality control mechanisms in 
ER guarantee the proper folding and assembly of 
proteins, and disturbances in ER homeostasis are 
mainly caused by redox imbalance, protein folding 
defects, infections, hypoxia, and impairments in 
Ca2+ homeostasis, which in turn lead to ER stress. 
In order to restore normal ER function, the quality 

in homeostasis. As such, the proper targeting of 
these pathways and organelles could be beneficial 
in the treatment of the pathological conditions as-
sociated with the impairment of these pathways. 
It is of paramount importance to find compounds 
with modulatory effects on these mechanisms as 
a promising strategy in the management of patho-
logical conditions. It is also notable that synthet-
ic drugs have been reported to have numerous 
side-effects, whereas plant-derived products have 
shown favorable biological activities (16-27). 

The present study aimed to describe the benefi-
cial effects of honokiol as a natural compound on 
the targeting of autophagy and ER stress.

Literature Review
Molecular Mechanisms of Autophagy

Autophagy is a catabolic process, which is re-
sponsible for the monitoring and conservation of 
cellular energetic balance during the degradation 
of proteins and organelles in lysosomes (28-37). 
Autophagy is stimulated by starvation and other 
stress conditions so as to provide adequate ener-
gy and maintain survival (38). If the energy level 
is insufficient (nutrient deprivation), autophagy 
is activated to partly decompose its deposits for 
the provision of energy. The periodic incidence of 
autophagy occurs at least once during the day; for 
instance, autophagy is induced between meals in 
organs such as the liver in order to preserve its pri-
mary functions, while providing amino acids and 
energy as well (39-44). As an evolutionary pro-
cess, autophagy is also observed in yeasts, and its 
main function is to respond to starvation. 

Based on mechanisms and functions, autopha-
gy is classified into three distinct types, including 
micro-autophagy, macro-autophagy (autophagy), 
and chaperone-mediated autophagy (CMA). In 
micro-autophagy, cytoplasmic structures are sur-
rounded by the pre-existing lysosomes or vacuole 
membranes. In CMA, the guidance of cargos to-
ward the lysosome is mediated by chaperone pro-
teins, such as HSPA8 (HSC70). In macro-autopha-
gy (autophagy), proteins and lipids are recruited 
from some intracellular membranes so as to form 
autophagosomes (double-membrane vesicles). 
Following that, they are infused with lysosomes to 
degrade their content (45-49). 

Based on the procedures of cargo delivery to the 
lysosome, autophagy is divided into the selective 
and non-selective types. Seemingly, CMA is more 
selective and specific compared to micro- and 
macro-autophagy (50,51). Furthermore, a basal 
level of autophagy is required to maintain homeo-
stasis and prevent the accumulation of impaired 
macromolecules and organelles in normal condi-
tions. Therefore, the strict regulation of autophagy 
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control mechanisms of ER are activated, including 
the unfolding of the protein response (UPR) and 
ER-associated degradation (ERAD) (65-71).

Three important pathways are available to 
preserve ER homeostasis. Inositol-requiring pro-
tein-1 (IRE1) is a membrane-localized kinase/en-
doribonuclease pathway, which affects ER homeo-
stasis through alterations in mRNA, so that IRE1 
converts the transcription factor X-box binding 
protein 1 (XBP1) into its active form through elim-
inating a specific intron from the mRNA of XBP1. 
Following that, XBP1 activates the transcription of 
the genes that are associated with protein degra-
dation and folding (72-74). In addition, IRE1 uses 
regulated IRE1-dependent decay, which is a pro-
cess for the decomposition of ER-localized mR-
NAs, in order to decrease the synthesis of proteins. 
The subsequent reduction in protein synthesis is 
associated with diminution in the required fold-
ing in ER, while the quality control mechanisms 
of ER achieve this time to degrade and re-fold the 
misfolded and unfolded proteins (75). Following 
the mentioned strategy of IRE1 for the stimula-
tion of the alterations in the transcription factor, 
c-Jun N-terminal kinase (JNA) signaling pathway 
are affected (76). 

Protein kinase RNA-like ER (PERK) is another 
major pathway, which is involved in the reduction 
of the protein load into ER through phosphoryla-
tion, which in turn leads to the suppression of the 
eukaryotic translation initiation factor 2α (elF2α) 
(77). During ER stress, stimulating transcription 
factor 6 (ATF6) is transferred to the Golgi appa-
ratus, where it is converted into its active form by 
cleavage. Afterwards, ATF6 is translocated to the 
nucleus, positively affecting the expression of the 
genes associated with protein and lipid synthesis. 
ATF6 and PERK have been reported to stimulate 
the expression of a pro-apoptotic factor, known 
as CCAAT/enhancerbinding protein homologous 
protein (CHOP) (78,79).

Association of ER Stress with Autophagy
Previous findings have confirmed the induction 

of autophagy by ER stress. However, it is essential 
to determine whether the autophagy induction 
under ER stress is associated with cell death or cell 
survival. In a study, Song et al. investigated the role 
of intermittent-hypoxia (IH)-induced autophagy 
on pancreatic cells (80), reporting that IH could 
enhance the autophagy level and increase the 
concentrations of the proteins associated with ER 
stress (e.g., CHOP, PERK, p-elF2, and ATF4). The in-
hibition of these signaling pathways resulted in the 
inhibition of autophagy, indicating that ER stress 
could stimulate autophagy. In the mentioned 
study, rapamycin and chloroquine were used as 

the stimulator and inhibitor of autophagy, respec-
tively in order to investigate the effects of autoph-
agy on cell viability. Interestingly, the increased 
level of autophagy by rapamycin decreased the cell 
death caused by IH, and the reduced autophagy by 
chloroquine was reported to increase cell death 
in pancreatic cells. Therefore, it was concluded 
that autophagy induction by IH through ER stress 
plays a key role in the protection of pancreatic cells 
against cell death. 

In this regard, the findings of Li et al. were incon-
sistent with the mentioned research (81). Accord-
ing to the latter, sodium fluoride could increase the 
level of ER stress in MC3T3-E1 osteoblastic cells, 
demonstrating that the increased level of ER stress 
is associated with higher autophagy and apoptosis 
in osteoblastic cells, which confirms the adverse 
effects of ER stress-induced autophagy. In fact, Li 
et al. claimed that the ameliorative or adverse ef-
fects of autophagy depend on the excitation level 
of autophagy, so that a specific level of autophagy 
induction could alleviate ER stress, while high lev-
els of autophagy induction are associated with the 
self-digestion of the cell and apoptosis.

Honokiol
Honokiol is a lignan, which is extracted from the 

bark of magnolia tree. It is a small molecule with 
the molecular weight of 266 and molecular for-
mula of C18H18O2. In recent decades, multiple 
derivatives of honokiol with antitumor activities 
have been developed, including 3/-formyl-honoki-
ol, 5-formyl-honokiol, and 3,5/-diformyl-honokiol 
(82). Honokiol has remarkable biological proper-
ties, including anti-inflammatory (83,84), antimi-
crobial (85), antioxidant (86), hepatoprotective 
(87, 88), neuroprotective (81,89), and protective 
effects against thrombosis (90) and angiopathy 
(91-95). 

According to the literature, honokiol was exten-
sively used in Chinese traditional medicine for the 
treatment of some diseases, such as thrombotic 
stroke, gastrointestinal disorders, anxiety, and 
nervous system impairment (96,97). Moreover, 
honokiol is a popular compound in Japan with ex-
tensive usage (98,99). 

Recently, Cen et al. examined the effects of ho-
nokiol on lung squamous cell carcinoma (100), re-
porting that honokiol exerted inhibitory effects on 
the FGF2-FGFR1 signaling pathway, thereby stim-
ulating apoptosis in lung squamous cell carcinoma 
and decreasing the viability and proliferation of 
cancer cells. 

Honokiol is also beneficial in the prevention of 
type II diabetes (101). Previous findings have indi-
cated that the consumption of honokiol is associat-
ed with the reduction of the abnormal alterations 
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of hepatic cytochrome P450 and transporter 
mRNA expression (e.g., hepatic Oat2 and Oatp2b1) 
in rats with type II diabetes induced by a high-fat 
diet and streptozotocin, which are involved in the 
incidence and development of diabetes. Further-
more, honokiol has been reported to ameliorate 
insulin resistance, nonalcoholic steatosis, and liv-
er dysfunction (102-104). Considering its anti-in-
flammatory properties, honokiol could significant-
ly inhibit the expression of cyclooxygenase-2 and 
activation of nuclear factor-kappa B (105).

Honokiol and Autophagy
Several studies have confirmed the protective 

and antitumor effects of honokiol through auto-
phagy (Figure 1). For instance, XQ et al. examined 

the beneficial effects of honokiol on anti-b1-ad-
renergic receptor autoantibody-induced myocar-
dial dysfunction (106), reporting that honokiol 
treatment could inhibit b1-AAB-induced effects, 
conserving the myocardial tissues against dys-
function. Moreover, honokiol could enhance the 
contractile ability of the heart and remarkably de-
crease the activity of lactate dehydrogenase. 

In another study, the potential antitumor ac-
tivity of honokiol in human thyroid cancer cells 
was evaluated (107), and the obtained results in-
dicated that honokiol could stimulate autophagy 
in human thyroid cancer cells via the Akt/mTOR 
signaling pathway, thereby reducing the viability 
and proliferation of these cancer cells. 

Table 1. Studies Confirming Autophagy Modulatory Properties of Honokiol

Reference In-vitro/In-vivo Cell Type/Animal Model Major Outcomes

(110) In-vitro U87-MG, GL261, and U87-MR-R9 
(glioma cells)

Induction of autophagy and subsequent apoptosis in glio-
ma cells

(111) In-vitro and In-vivo Human Osteosarcoma Cells Decreased tumor growth by stimulation of autophagy and 
apoptosis through ROS/ERK1/2 signaling pathway

(112) In-vitro and In-vivo Oral Squamous Cell Carcinoma Inhibition of MAPK pathway and regulation of Akt/mTOR 
or AMPk pathways for induction of autophagy in oral squa-
mous cell carcinoma

(64) In-vitro Osteosarcoma Cells Increased level of LC3II protein and decreased levels of 
PI3K, p-Akt, and p-mTOR, resulting in autophagy induction 
in osteosarcoma cells

(113) In-vitro Human Glioblastoma Cells Decreased levels of Akt and PI3K and subsequent stimula-
tion of autophagy and exerting antitumor effects on human 
glioblastomas

(93) In-vitro Neuroblastoma Cells Inhibition of migration  of cancer cells by activation of auto-
phagy through PI3K/Akt/mTOR pathway

(114) In-vitro Human Non-small-cell Lung Can-
cer

Decreased tumor growth through induction of cell death 
and inhibition of autophagy

(115) In-vitro Human Prostate Cancer Cells Increased level of LC3II protein and induction of autophagy 
in prostate cancer cells

(116) In-vitro Glioblastoma Multiforme Cells Increased levels of Beclin-1 and LC3-II, autophagy induc-
tion, and subsequent decreased cancer cell viability

Figure 1. Modulatory Effects of Honokiol on Autophagy Pathway
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Honokiol and ER Stress 
In general, honokiol uses the ER stress pathway to 
exert its protective or antitumor effects (Figure 2). 
In a study in this regard, Chiu et al. applied honoki-
ol to suppress tumor growth and metastasis (117). 
According to the obtained results, honokiol stimu-
lated ER stress through CHOP activation, thereby 
significantly decreasing the viability of melanoma 
cells and suppressing the epithelial mesenchymal 
transition of these cancer cells. Similarly, Jangra 
et al. investigated the neuroprotective effects of 

honokiol mediated by ER stress (118), reporting 
that honokiol significantly reduced the CHOP lev-
el in the hippocampus of stressed mice in order 
to inhibit ER stress, which in turn results in the 
inhibition of cognitive impairment and depressive 
behaviors in the stressed mice. Other findings in 
this regard have demonstrated that honokiol ex-
erts stimulatory effects on ER stress through en-
hancing the level of glucose-regulated protein 78, 
leading to the induction of autophagy and reduced 
migration of neuroblastoma cells (93).

Reference In-vitro/In-vivo Cell Type/Animal Model Major Outcomes

(119) In-vitro Highly Metastatic Gastric Cancer 
Cell Lines

Stimulation of ER stress and subsequent inhibited gastric 
tumor growth and peritoneal dissemination

(120) In-vivo Torsion-/Detorsion-induced Tes-
ticular Injury in Rats

Inhibition of ER stress-related apoptosis and amelioration 
of testicular injury

(121) In-vivo Mouse Model with Acute Pancre-
atitis and Associated Acute Long 
Injury

Increased levels of ER stress-related proteins (e.g., elF2α 
and CHOP) and alleviation of intensity of acute pancreatitis 
and associated lung injury

(122) In-vitro and In-vivo Human Chondrosarcoma Cells Decreased viability and tumor growth by apoptosis stimu-
lation via mitochondrial dysfunction and ER stress

Table 2. Studies Confirming Modulatory Effects of Honokiol on ER Stress

Figure 2. Modulatory Effects of Honokiol on ER Stress Pathway

Conclusion
ER stress is involved in the pathogenesis of some 

disorders, such as neurological disorders, pulmo-
nary fibrosis, and cancer. In these pathological 
conditions, UPR is activated to partly restore the 
homeostasis of ER by the proper folding of pro-
teins and through the degradation of unfolded and 
misfolded proteins in severe conditions. In addi-
tion, autophagy is associated with pathological 
conditions; for instance, in Alzheimer’s disease, 
the low level or lack of autophagy contributes to 
the aggregation of amyloid-α. Therefore, the tar-
geting of these mechanisms could be beneficial in 

the treatment of various pathological conditions. 
According to the information in Table 2, honoki-
ol has stimulatory and inhibitory effects on ER 
stress in two modes depending on the condition. 
As such, it plays a key role in maintaining homeo-
stasis and proteostasis. According to the informa-
tion in Table 1, in some conditions, honokiol could 
stimulate autophagy, while in other conditions, it 
inhibits autophagy. In both its modes, honokiol 
exerts protective and antitumor effects. Further 
investigations are required in order to clarify the 
association of honokiol with ER stress and auto-
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phagy, with the findings of this review laying the 
groundwork in this regard.
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