Farzad khademi; Mohammad Derakhshan; Ramin Sadeghi
Abstract
Introduction: Susceptibility to tuberculosis (TB) infection varies in individuals and is linked to genetic variations in the toll-like receptors (TLRs) genes. The current study employed a systematic literature review and meta-analysis to describe the most prevalent single nucleotide polymorphisms (SNPs) ...
Read More
Introduction: Susceptibility to tuberculosis (TB) infection varies in individuals and is linked to genetic variations in the toll-like receptors (TLRs) genes. The current study employed a systematic literature review and meta-analysis to describe the most prevalent single nucleotide polymorphisms (SNPs) from various TLRs and to assess the association between these polymorphisms and tuberculosis susceptibility. Methods: The PubMed, Google Scholar, Scopus, and ISI Web of Knowledge databases were searched for all articles published before May 25, 2015, that contained the target keywords. Following the application of the inclusion and exclusion criteria, a total of 37 relevant articles were identified that examined the association between the TLRs gene polymorphism and susceptibility to tuberculosis.Result: A meta-analyses approach to the research determined that there is a statistically significant association between TLR1 rs4833095, TLR6 rs5743810, and TLR8 rs3788935 in the allelic model and also TLR1 rs4833095, TLR1 rs5743018, TLR2 rs5743708, TLR6 rs5743810, and TLR8 rs3761624 in the co-dominant model with increased or decreased susceptibility to tuberculosis. No associations were observed between the other TLRs polymorphisms and tuberculosis risk.Discussion: Several studies have found that host genetic factors, such as SNPs in TLRs gene, may increase an individual’s susceptibility to tuberculosis. Therefore, the identification of these SNPs is important to investigate immune responses to TB.Conclusion: The present study concluded that there is an association between some polymorphisms of TLRs and tuberculosis risk. Thus, for a better understanding about the role of SNPs to TB susceptibility, additional studies on alternative TLRs SNPs are needed.
Mohammad Derakhshan
Abstract
Type A influenza viruses causes infections in human and animals, especially in birds. Wild aquatic birds are the natural hosts for all known influenza type A viruses. Avian type viruses are divided into two groups: highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI). HPAI ...
Read More
Type A influenza viruses causes infections in human and animals, especially in birds. Wild aquatic birds are the natural hosts for all known influenza type A viruses. Avian type viruses are divided into two groups: highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI). HPAI virus is very dangerous, but LPAI virus is much weaker. Two forms of mutations including drift and shift have been recognized for antigenic changes in influenza viruses. Antigenic shift is responsible for producing re-assortment viruses with a potentiality to be transmissible to human and possibly resulting in pandemic. Emerging new species of viruses, the loss of previous immunity in human population and the transmission from human to human are the three major conditions that result in the occurrence of influenza pandemic in human. When pandemic happens, public health is a major concern due to probability of high fatality rate and other socioeconomic consequences.