Roya Narenji Sani; Ali Eshraghi; Somayeh Farokhnejad
Abstract
Today, radiological procedures using intravascular iodinated contrast media are being widely used for the diagnoses and treatment of various diseases, which highlight one of the main etiologies of contrast-induced nephropathy and hospital-acquired renal failure. Contrast-induced nephropathy development ...
Read More
Today, radiological procedures using intravascular iodinated contrast media are being widely used for the diagnoses and treatment of various diseases, which highlight one of the main etiologies of contrast-induced nephropathy and hospital-acquired renal failure. Contrast-induced nephropathy development is associated with longer hospital stay, increase in both short- and long-term morbidity and mortality, in addition to greater health care costs.The pathogenesis of contrast-induced nephropathy has not yet been fully explained in detail; however it is clear that the root concept is medullary hypoxia-induced renal tubular damage.Chronic kidney disease and diabetes mellitus are the two most important intrinsic predisposing factors to contrast-induced nephropathy. As no treatment can specifically target contrast-induced nephropathy, the main goal for clinicians is prevention of the disease. While the best approach for achieving this goal is still controversial, optimization of the patients’ circulating volume remains the only proven strategy to date. As contrast-induced nephropathy is a potentially preventable clinical condition, its better understanding will lead to better prevention of this disease. Hereby, we aimed to discuss contrast-induced nephropathy from 7 different aspects in clinical practice: 1) clinical aspect, 2) prevalence, 3) pathophysiology, 4) contrast agents and renal cell apoptosis, 5) different contrast media, 6) prevention, and 7) treatment.
Somaye Farokhnejad; Mostafa Dastani; Afsoon Fazlinejad; Roya Narenji Sani
Abstract
Introduction: Ischemic heart disease is caused mainly by obstruction of coronary arteries. The ischemic assessment through echocardiography is dependent on wall motion abnormality detection during systole. In patients with ischemic heart disease the diastolic function is impaired before systolic function ...
Read More
Introduction: Ischemic heart disease is caused mainly by obstruction of coronary arteries. The ischemic assessment through echocardiography is dependent on wall motion abnormality detection during systole. In patients with ischemic heart disease the diastolic function is impaired before systolic function and measurement of regional diastolic dysfunction if possible will be most sensitive for assessment of obstructed coronary artery region. This study was designed to determine whether regional left ventricular delayed relaxation diagnosis could be detected with strain imaging derived from two-dimensional speckle-tracking echocardiography in patients with coronary artery disease.Methods: All the articles reviewed were obtained using MEDLINE & ScienceDirect (up to October 2014). All data extracted by speckle tracking echocardiography. The index which is used is strain imaging diastolic index which is calculated as: (A-B) A×100 . A is the amount of strain at the time Aortic value closure and B is the amount of strain in first one-third point of diastolic duration.Result: Four articles were reviewed. Three articles assessed patients with echocardiography at rest and one with stress echocardiography. All articles showed the coronary artery tracking with significant stenosis is possible by regional deformation analysis through two-dimensional strain.Discussion: The usage of strain images obtained through two-dimensional speckle tracking has been validated for the quantitation assessment of regional dysfunction in ischemic heart disease. Regional LV delayed relaxation diagnosis with strain imaging is a reliable method after treadmill stress test.Conclusion: Strain imaging is reasonable for evaluation of ischemia as a low cost noninvasive test with high accuracy.